TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 BUILDING MODELS	3
2.1 FAILURE FLAGS	
2.2 HARDWARE DESCRIPTION LANGUAGES	4
2.2.1 Introduction to HDL	4
2.2.2 Implementation into VHDL-AMS	4
3.0 VERILOG-A	10
3.1 DIODE CLAMP MODEL	10
3.2 CLAMP MODEL WITH SNAPBACK	12
3.3 CLAMP MODEL WITH SNAPBACK AND ADDITIONAL KINK	14
3.4 CLAMP MODEL WITH SNAPBACK AND CURRENT HYSTERESIS	15
3.5 DYNAMIC VOLTAGE OVERSHOOT DURING TRIGGERING	17
3.6 BENEFITS AND LIMITATIONS	17
3.7 MODELING SNAPBACK BASED ON CONTINUOUS INTERNAL STATE VARIABLE	17
4.0 SPICE-LIKE CIRCUIT MODELS	19
4.1 DIODE COMPACT MODEL	19
4.1.1 Ideal Diode Model Details	19
4.1.2 Ideal Diode Model Example	20
4.1.3 Benefits and Limitations	20
4.2 PSPICE TABLE	20
4.2.1 Detailed PSPICE Table Methodology	21
4.2.2 Snapback Example	22
4.2.3 Benefits and Limitations	22
4.3 SPICE MODEL WITH SWITCHES AND CONTROLLED SOURCES	22
4.3.1 Detailed VCS\DCV\CCVS Methodology Shown in an Example	23
4.3.2 Benefits and Limitations	23
4.4 CURRENT-SWITCHED RESISTOR NETWORKS	23
4.4.1 Unit Cell Construction and Assembly	23
4.4.2 Diode Example	27
4.4.3 Snapback Example	28
4.4.4 Benefits and Limitations	30
4.5 SPICE SCR MODEL	31
4.5.1 Detailed PSPICE SCR Model Methodology	31
4.5.2 Curve Matching Snapback Examples	32
4.5.3 Benefits and Limitations	33
4.6 SWITCH-BASED BEHAVIORAL MODEL IN SPICE	33
4.7 SNAPBACK MODEL WITH DIFFUSION LINE	36
5.0 APPLICATION OF DATA EXCHANGE TEMPLATE	38

5	5.1	VERILOG-A	38
5	5.2	SWITCH-BASED MODELS	41
5	5.3	BIPOLAR MODEL USING DIFFUSION LINE	43
6.0	MI	TIGATING CONVERGENCE CHALLENGES	45
6	5.1	GENERIC METHODS TO AVOID CONVERGENCE PROBLEMS	45
6	3.2	SPICE SIMULATION OPTIONS TO AVOID CONVERGENCE CHALLENGES	46
7.0	รเ	JMMARY	47
8.0	οι	JTLOOK	47
9.0	RE	EFERENCES	48

Annexes

Annex A (Informative):	Codes	50
Annex B (Informative):	Revision History for ESD TR26.0-02	59

Tables

Table 1:	Implementations of Piecewise Linear I-V Models	2
Table 2:	Comparison of Models	3
Table 3:	Parameters of the Ideal Diode SPICE Model 1	9

Figures

Figure 1:	Piecewise Linear Description of an I-V TLP Measurement 1
Figure 2:	Piecewise Linear Diode Implementation into VHDL
Figure 3:	Piecewise Linear Snapback Device Implementation into VHDL from TLP Measurement to State Machine Diagram
Figure 4:	Flow Chart-Organigram for the Piecewise Linear Snapback Device
Figure 5:	Application Where the Described State Machine Model Similar to Figure 4 has been Used; Comparison of Transient Measurement and Simulation Results
Figure 6:	TLP Characteristic of the Protection Device and Simulation Results from the State Model
Figure 7:	Simulation Schematic
Figure 8:	Simulation Results With and Without the On-Chip Decoupling Capacitance – 10-kilovolt TLP Injection, 1 ns Rise-Time
Figure 9:	Diode Clamp Symbol 10
Figure 10	: Piecewise Linear I-V Curve 11
Figure 11	: DC Sweep of Diode Clamp 11
Figure 12	: Snapback Clamp Symbol 12
Figure 13	: Piecewise Linear I-V Curve of Snapback Clamp 12
Figure 14	: Modeling of the TLP Measured I-V Curve of an Internal Protection of a TI SN65LVPE502CP USB3 RX I/O
Figure 15	: Zoom of Figure 13 for Small Currents 13
Figure 16	: Piecewise Linear I-V Curve of Snapback Clamp with Additional Inflection Point 14
Figure 17	: Modeling of the TLP Measured I-V Curve of an Internal Protection of a TI SN65LVPE502CP USB3 RX I/O With an Extra Kink at About 1.5 Amperes

Figure 18:	Additional Overshoot at the End of a Simulated TLP Pulse Due to Missing Current .	15
Figure 19:	Piecewise Linear I-V Curve of Snapback Clamp with Hysteresis in Current	16
Figure 20:	Simulation of Voltage Versus Time	16
Figure 21:	100-ns TLP I-V Curve Measured for Nexperia "device 3" and Modeled Based on Wang's Approach, TLP Current on Linear/Logarithmic Scale	. 18
Figure 22:	Parameter Set to Model Nexperia "device 3" Within Wang's Model Framework	18
Figure 23:	Zener Diode Measurement and Models	20
Figure 24:	Schematic Showing the TABLE Function in PSPICE	21
Figure 25:	Sub-Circuit and TABLE Point Modification	21
Figure 26:	Snapback Device - Measurements and Simulation Results	22
Figure 27:	VCS DCV & CCVS Based Snapback Model Suitable for Stress With a TLP Stress Model	. 22
Figure 28:	Ideal Diode Circuit and I-V Curve	24
Figure 29:	Negative Ideal Diode Circuit and I-V Curve	25
Figure 30:	Positive Resistance Cell and Negative Resistance Cell	26
Figure 31:	Positive Resistance Cell and Individual Currents	27
Figure 32:	2-Piece Diode Circuit and Curve	28
Figure 33:	3-Segment Snapback Circuit	29
Figure 34:	3-Piece Snapback Curve	29
Figure 35:	Regions of Stability	30
Figure 36:	PNP NPN (SCR) TLP Model	31
Figure 37:	Sub-Circuit Text File – Enhanced	32
Figure 38:	Bi-Polar Snapback Model	33
Figure 39:	Core of the Switch-Based Behavioral Model in SPICE	34
Figure 40:	Extending the Model Core with Additional Switches to Reproduce Kinks in the I-V Curve	. 34
Figure 41:	Modeling Changes in the Dynamic Resistance	35
Figure 42:	Failure Detection Inside the Model	35
Figure 43:	Simplified Schematic of the Switch-Based Model	36
Figure 44:	Schematical Picture of Model Which is Subjected to a TLP Pulse; Reverse Diode and Snapback Representation; Modeling of the Floating Base as a Diffusion Line	. 37
Figure 45:	Simulation Results for a Snapback Device	37
Figure 46:	Parameters of a Snapback Device Stored in the Data Exchange Format	38
Figure 47:	Schematic I-V Curve and Corresponding State Diagram	39
Figure 48:	Parameters Used for Describing the Snapback Device and Verilog-A Code Which Describes the State Diagram	. 40
Figure 49:	Transient Voltage Curve and Transient Voltage Curve if a 30 pF Capacitance is Added in Parallel to the DUT Model	. 41
Figure 50:	Circuit That Describes the Snapback Device Using the Approach Described in Section 4.6.	. 41
Figure 51:	Resulting TLP Curves of the Circuit Shown in Figure 50	42
Figure 52:	Transient Current and Voltage Curves	43
Figure 53:	TLP Curve Given by the Data Exchange Template; Fail Current Versus Time	44
Figure 54:	Comparison of a Model with Data Given by the Data Exchange Format; Transient Simulation Results at 7A; Magnification on the Overshoot Peak	. 44
Figure 55:	Implementation of the Failure Mechanism	45