### ESD Standards: An Annual Progress Report by The ESD Association

Industry standards play a major role in providing meaningful metrics and common procedures that allow various manufacturers, customers, and suppliers to communicate from facility to facility around the world. Standards are increasingly important in our global economy. In manufacturing, uniform quality requirements and testing procedures are necessary to make sure that all involved parties are speaking the same language. In electrostatic discharge (ESD) device protection, standard methods have been developed for component ESD stress models to measure a component's sensitivity to electrostatic discharge from various sources. In ESD control programs, standard test methods for product qualification and periodic evaluation of wrist straps, garments, ionizers, worksurfaces, grounding, flooring, shoes, static dissipative planar materials, shielding bags, packaging, electrical soldering/desoldering hand tools, and flooring/footwear systems have been developed to ensure uniformity around the world.

The EOS/ESD Association, Inc. (ESDA) is dedicated to advancing the theory and practice of ESD protection and avoidance. The ESDA is an American National Standards Institute (ANSI) accredited standards developer. The Association's consensus body is called the Standards Committee (STDCOM), which has responsibility for the overall development of documents. Volunteers from the industry participate in working groups to develop new and to update current ESDA documents.

The ESDA's Standards Business Unit is charged with keeping pace with the industry demands for increased device and product performance and more effective control programs. The existing standards, standard test methods, standard practices, and technical reports assist in the design and monitoring of the electrostatic protected area (EPA), and also assist in the stress testing of ESD sensitive electronic components. Many of the existing documents relate to controlling electrostatic charge on personnel and stationary work areas. However, with the ever increasing emphasis on automated handling, the need to evaluate and monitor what is occurring inside of process equipment is growing daily. Since automation has become more dominant, the Charged Device Model (CDM) has become the primary cause of ESD failures and, thus, the more urgent concern. Together, the Human Body Model (HBM) and CDM cover the vast majority of ESD events that might occur in a typical factory.

The ESD Association document categories are:

- **Standard (S):** A precise statement of a set of requirements to be satisfied by a material, product, system or process that also specifies the procedures for determining whether each of the requirements is satisfied.
- Standard Test Method (STM): A definitive procedure for the identification, measurement and evaluation of one or more qualities, characteristics or properties of a material, product, system or process that yield a reproducible test result.
- **Standard Practice (SP):** A procedure for performing one or more operations or functions that may or may not yield a test result. Note: if a test result is obtained it may not be reproducible.
- **Technical Report (TR):** A collection of technical data or test results published as an informational reference on a specific material, product, system or process.

The ESDA's Technology Roadmap is compiled by industry experts in IC protection design and test to provide a look into future ESD design and manufacturing challenges. The roadmap previously pointed out that numerous mainstream electronic parts and components would reach assembly factories with a lower

level of ESD protection than could have been expected just a few years earlier. This prediction has proven to be rather accurate. As with any roadmap, the view of the future is constantly changing and requires updating on the basis of technology trend updates, market forces, supply chain evolution, and field return data. An updated roadmap was published in March 2013 and industry experts extended the horizon beyond the 2013 predictions. It contains, for the first time, a roadmap for the evolution of ESD stress testing. This includes forward looking views of possible changes in the standard device level tests (HBM and CDM), as well as the expected progress in other important areas, such as Transmission Line Pulsing (TLP), Transient Latch-Up (TLU), Cable Discharge Events (CDE), and Charged Board Events (CBE). A view of work on electrical overstress (EOS) has also been included in the Technology Roadmap.

EOS is an area that has long been overlooked by the industry, not because of its limited importance but rather because of its complex definition. Recently, a working group has been focusing on this area and expects to publish a Technical Report (TR) in 2014 that helps establish some fundamental definitions and distinctions between various EOS threats and provide direction for further work. Another working group is creating a second "best practices" TR that will outline ways to mitigate EOS threats in manufacturing.

Another area of development has been a request by the aerospace industry for an ESD control document that defines more definitively what ESD controls need to be in place in factories that are in the aerospace industry. A survey of the aerospace industry is expected to take place in early 2014 to assist in identifying industry needs.

The ESDA Standards Committee is continuing several joint document development activities with the JEDEC Solid State Technology Association. Under the Memorandum of Understanding agreement, the ESDA and JEDEC formed a joint working group for the standardization work in which volunteers from the ESDA and JEDEC member companies can participate. This collaboration between the two organizations has paved the way for the development of harmonized test methods for ESD, which will ultimately reduce uncertainty about test standards among manufacturers and suppliers in the solid state industry. At the time of this publication, ANSI/ESDA/JEDEC JS-001-2014, a fourth revision of the joint HBM document, was beginning the approval process with an expected publication date in mid-2014. A second joint working group is currently working on a joint charged device model (CDM) document with a goal of publishing in 2014. These efforts will assist manufacturers of devices by providing one test method and specification instead of multiple, almost - but not quite – identical, versions of device testing methods.

The ESDA is also working in the area of process assessment. The working group is currently developing a technical report that is expected to be released in 2014. The goal of this work is to describe a set of methodologies, techniques, and tools that can be used to characterize the ability of a process to safely handle ESD sensitive items. It is expected that following the release of this technical report, more work will be done to provide a more detailed and complete description of process assessment methods.

The ESDA standard covering the requirements for creating and managing an ESD control program is ANSI/ESD S20.20 "ESD Association Standard for the Development of an Electrostatic Discharge Control Program for – Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices)". ANSI/ESD S20.20 is a commercial update of and replacement for MIL-STD-1686 and has been adopted by the United States Department of Defense. In addition, the 2007-2008 update of IEC 61340-5-1 edition 1.0 "Electrostatics - Part 5-1: Protection of Electronic Devices

from Electrostatic Phenomena General Requirements" is technically equivalent to ANSI/ESD S20.20. A five-year review of ANSI/ESD S20.20 has begun and technical changes are being made to the document based on industry changes and user requests. There are unique constraints with the revision that must be taken into account, including facility certification and continued harmonization with other standards – IEC 61340-5-1 and newly revised JEDEC 625B. A target date of May 2014 has been given for the release of the new document.

In order to meet the global need in the electronics industry for technically sound ESD Control Programs, the ESDA has established an independent third party certification program. The program is administered by EOS/ESD Association, Inc. through country-accredited ISO9000 certification bodies that have met the requirements of this program. The facility certification program evaluates a facility's ESD program to ensure that the basic requirements from industry standards ANSI/ESD S20.20 or IEC 61340-5-1 are being followed. More than 519 facilities have been certified worldwide since inception of the program. The factory certification bodies report strong interest in certification to ANSI/ESD S20.20, and consultants in this area report that inquiries for assistance remain at a very high level. Individual education also seems of interest once again as 46 professionals have obtained Certified ESD Program Manager status and many more are attempting to qualify for this certification. A large percentage of the certification program requirements are based on Standards and the other related documents produced by the ESD Association Standards Committee.

### **Current ESD Association Standards Committee Documents**

### Charged Device Model (CDM)

# ANSI/ESD S5.3.1-2009 Electrostatic Discharge Sensitivity Testing - Charged Device Model (CDM) - Component Level

Establishes the procedure for testing, evaluating, and classifying the ESD sensitivity of components to the defined CDM.

### **Cleanrooms**

# ESD TR55.0-01-04 Electrostatic Guidelines and Considerations for Cleanrooms and Clean Manufacturing

Identifies considerations and provides guidelines for the selection and implementation of materials and processes for electrostatic control in cleanroom and clean manufacturing environments. (Formerly TR11-04)

### **Compliance Verification**

### ESD TR53-01-06 Compliance Verification of ESD Protective Equipment and Materials

Describes the test methods and instrumentation that can be used to periodically verify the performance of ESD protective equipment and materials.

### Electronic Design Automation (EDA)

### ESD TR18.0.01-11 – ESD Electronic Design Automation Checks

Provides guidance for both the EDA industry and the ESD design community for establishing a comprehensive ESD electronic design automation (EDA) verification flow satisfying the ESD design challenges of modern ICs.

### ESD Control Program

# ANSI/ESD S20.20-2007 Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices)

Provides administrative and technical requirements for establishing, implementing, and maintaining an ESD Control Program to protect electrical or electronic parts, assemblies, and equipment susceptible to ESD damage from Human Body Model (HBM) discharges greater than or equal to 100 volts.

### ESD TR20.20-2008—ESD Handbook (Companion to ANSI/ESD S20.20)

Produced specifically to support ANSI/ESD S20.20 ESD Control Program standard, this 132-page document is a major rewrite of the previous handbook. It focuses on providing guidance that can be used for developing, implementing, and monitoring an ESD control program in accordance with the S20.20 standard.

### **Flooring**

### ANSI/ESD STM7.1-2013 Resistive Characterization of Materials – Floor Materials

Covers measurement of the electrical resistance of various floor materials, such as floor coverings, mats, and floor finishes. It provides test methods for qualifying floor materials before installation or application, and for evaluating and monitoring materials after installation or application.

### ESD TR7.0-01-11 Static Protective Floor Materials

This technical report reviews the use of floor materials to dissipate electrostatic charge. It provides an overview on floor coverings, floor finishes, topical antistats, floor mats, paints and coatings. It also covers a variety of other issues related to floor material selection, installation and maintenance.

### Flooring and Footwear Systems

### ESD DSTM97.1-2013 Floor Materials and Footwear – Resistance Measurement in Combination with a Person

Provides test methods for measuring the electrical system resistance of floor materials in combination with person wearing static control footwear.

This is a draft document.

### ANSI/ESD STM97.2-2006 Floor Materials and Footwear – Voltage Measurement in Combination with a Person

Provides for measuring the electrostatic voltage on a person in combination with floor materials and footwear, as a system.

### Footwear

### ESD DSTM9.1-2013 Footwear – Resistive Characterization

Defines a test method for measuring the electrical resistance of shoes used for ESD control in the electronics environment (not to include heel straps and toe grounders). This is a draft document.

### ESD SP9.2-2003 Footwear – Foot Grounders Resistive Characterization

Provides test methods for evaluating foot grounders and foot grounder systems used to electrically bond or ground personnel as part of an ESD Control Program. Static Control Shoes are tested using ANSI/ESD STM9.1.

### **Garments**

### ANSI/ESD STM2.1-2013 Garments - Resistive Characterization

Provides test methods for measuring the electrical resistance of garments. It covers procedures for measuring sleeve-to-sleeve resistance and point-to-point resistance.

### ESD TR2.0-01-00 Consideration for Developing ESD Garment Specifications

Addresses concerns about effective ESD garments by starting with an understanding of electrostatic measurements and how they relate to ESD protection. (Formerly TR05-00)

### ESD TR2.0-02-00 Static Electricity Hazards of Triboelectrically Charged Garments

Intended to provide some insight to the electrostatic hazards present when a garment is worn in a flammable or explosive environment. (Formerly TR06-00)

### **Glossary**

### ESD ADV1.0-2012 Glossary of Terms

Definitions and explanations of various terms used in Association Standards and documents are covered in this Advisory. It also includes other terms commonly used in the electronics industry.

### **Gloves and Finger Cots**

#### ANSI/ESD SP15.1-2011 In-Use Resistance Testing of Gloves and Finger Cots

Provides test procedures for measuring the intrinsic electrical resistance of gloves and finger cots.

#### ESD TR15.0-01-99 ESD Glove and Finger Cots

Reviews the existing known industry test methods for the qualification of ESD protective gloves and finger cots. (Formerly TR03-99)

#### Grounding

#### ANSI/ESD S6.1-2009 Grounding

Specifies the parameters, materials, equipment, and test procedures necessary to choose, establish, vary, and maintain an Electrostatic Discharge Control grounding system for use within an ESD Protected Area for protection of ESD susceptible items, and specifies the criteria for establishing ESD Bonding.

### **Handlers**

### ANSI/ESD SP10.1-2007 Automated Handling Equipment (AHE)

Provides procedures for evaluating the electrostatic environment associated with automated handling equipment.

### ESD TR10.0-01-02 Measurement and ESD Control Issues for Automated Equipment Handling of ESD Sensitive Devices below 100 Volts

Provides guidance and considerations that an equipment manufacturer should use when designing automated handling equipment for these low voltage sensitive devices. (Formerly TR14-02)

### Hand Tools

### ESD STM13.1-2000 Electrical Soldering/Desoldering Hand Tools

Provides electric soldering/desoldering hand tool test methods for measuring the electrical leakage and tip to ground reference point resistance, and provides parameters for EOS safe soldering operation.

### ESD TR13.0-01-99 EOS Safe Soldering Iron Requirements

Discusses soldering iron requirements that must be based on the sensitivity of the most susceptible devices that are to be soldered. (Formerly TR04-99)

#### Human Body Model (HBM)

### ANSI/ESDA/JEDEC JS-001-2014 ESDA/JEDEC Joint Standard for Electrostatic Discharge Sensitivity Testing – Human Body Model (HBM) – Component Level

Establishes the procedure for testing, evaluating, and classifying the electrostatic discharge sensitivity of components to the defined human body model (HBM).

# ESD JTR001-01-12, ESD Association Technical Report User Guide of ANSI/ESDA/JEDEC JS-001 Human Body Model Testing of Integrated Circuits

Describes the technical changes made in ANSI/ESDA/JEDEC JS-001-2011 contained in the new 2012 version) and explains how to use those changes to apply HBM (Human Body Model) tests to IC components.

### Human Metal Model (HMM)

# ANSI/ESD SP5.6-2009 Electrostatic Discharge Sensitivity Testing - Human Metal Model (HMM) - Component Level

Establishes the procedure for testing, evaluating, and classifying the ESD sensitivity of components to the defined HMM.

### ESD TR5.6-01-09 Human Metal Model (HMM)

Addresses the need for a standard method of applying the IEC contact discharge waveform to devices and components.

### **Ionization**

### ANSI/ESD STM3.1-2006 Ionization

Test methods and procedures for evaluating and selecting air ionization equipment and systems are covered in this standard test method. The document establishes measurement techniques to determine ion balance and charge neutralization time for ionizers.

### ANSI/ESD SP3.3-2012 Periodic Verification of Air Ionizers

Provides test methods and procedures for periodic verification of the performance of air ionization equipment and systems (ionizers).

### ANSI/ESD SP3.4-2012 Periodic Verification of Air Ionizer Performance Using a Small Test Fixture

Provides a test fixture example and procedures for performance verification of air ionization used in confined spaces where it may not be possible to use the test fixtures defined in ANSI/ESD STM3.1 or ANSI/ESD SP3.3.

### ESD TR3.0-01-02 Alternate Techniques for Measuring Ionizer Offset Voltage and Discharge Time

Investigates measurement techniques to determine ion balance and charge neutralization time for ionizers. (Formerly TR13-02)

### ESD TR3.0-02-05 Selection and Acceptance of Air Ionizers

Reviews and provides a guideline for creating a performance specification for the four ionizer types contained in ANSI/ESD STM3.1: room (systems), laminar flow hood, worksurface (e.g., blowers), and compressed gas (nozzles & guns). (Formerly ADV3.2-1995)

### Machine Model (MM)

# ANSI/ESD STM5.2-2012 Electrostatic Discharge Sensitivity Testing - Machine Model (MM) - Component Level

Establishes the procedure for testing and evaluating the ESD sensitivity of components to the defined machine model.

# ANSI/ESD SP5.2.1-2012 Human Body Model (HBM) and Machine Model (MM) Alternative Test Method: Supply Pin Ganging – Component Level

Defines an alternative test method to perform Human Body Model or Machine Model component level ESD tests when the component or device pin count exceeds the number of ESD simulator tester channels. (Formerly ANSI/ESD SP5.1.1-2006)

# ANSI/ESD SP5.2.2-2012 Human Body Model (HBM) and Machine Model (MM) Alternative Test Method: Split Signal Pin - Component Level

Defines an alternative test method to perform Human Body Model or Machine Model component level ESD tests when the component or device pin count exceeds the number of ESD simulator tester channels. (Formerly ANSI/ESD SP5.1.2-2006)

# ESD TR5.2-01-01 Machine Model (MM) Electrostatic Discharge (ESD) Investigation - Reduction in Pulse Number and Delay Time

Provides the procedures, results, and conclusions of evaluating a proposed change from 3 pulses (present requirement) to 1 pulse while using a delay time of both 1 second (present requirement) and 0.5 second. (Formerly TR10-01)

### **Ohmmeters**

### ESD TR50.0-02-99 High Resistance Ohmmeters--Voltage Measurements

Discusses a number of parameters that can cause different readings from high resistance meters when improper instrumentation and techniques are used and the techniques and precautions to be used in order to ensure the measurement will be as accurate and repeatable as possible for high resistance measurement of materials. (Formerly TR02-99)

### **Packaging**

**ANSI/ESD STM11.11-2006 Surface Resistance Measurement of Static Dissipative Planar Materials** Defines a direct current test method for measuring electrical resistance, replacing ASTM D257-78. This test method is designed specifically for static dissipative planar materials used in packaging of ESD sensitive devices and components.

### ANSI/ESD STM11.12-2007 Volume Resistance Measurement of Static Dissipative Planar Materials

Provides test methods for measuring the volume resistance of static dissipative planar materials used in the packaging of ESD sensitive devices and components.

### ANSI/ESD STM11.13-2004 Two-Point Resistance Measurement

Measures the resistance between two points on a material's surface without consideration of the material's means of achieving conductivity. This test method was established for measuring resistance where the concentric ring electrodes of ANSI/ESD STM11.11 cannot be used.

### ANSI/ESD STM11.31-2012 Bags

Provides a method for testing and determining the shielding capabilities of electrostatic shielding bags.

### ANSI/ESD S541-2008 Packaging Materials for ESD Sensitive Items

Describes the packaging material properties needed to protect electrostatic discharge (ESD) sensitive electronic items, and references the testing methods for evaluating packaging and packaging materials for those properties. Where possible, performance limits are provided. Guidance for selecting the types of packaging with protective properties appropriate for specific applications is provided. Other considerations for protective packaging are also provided.

### ESD ADV11.2-1995 Triboelectric Charge Accumulation Testing

Provides guidance in understanding the triboelectric phenomenon and relates current information and experience regarding tribocharge testing as used in static control for electronics.

### **Seating**

### ESD DSTM12.1-2013(LB) Seating - Resistive Measurement

Provides test methods for measuring the electrical resistance of seating used for the control of electrostatic charge or discharge. It contains test methods for the qualification of seating prior to installation or application, as well as test methods for evaluating and monitoring seating after installation or application.

This is a draft document.

### Socketed Device Model (SDM)

# ANSI/ESD SP5.3.2-2013 Electrostatic Discharge Sensitivity Testing – Socketed Device (SDM) – Component Level

Provides a test method for generating a Socketed Device Model (SDM) test on a component integrated circuit (IC) device.

### ESD TR5.3.2-01-00 Socket Device Model (SDM) Tester

Helps the user understand how existing SDM testers function, offers help with the interpretation of ESD data generated by SDM test systems, and defines the important properties of an "ideal" socketed-CDM test system. (Formerly TR08-00)

### **Static Electricity**

### ESD TR50.0-01-99 Can Static Electricity Be Measured?

Gives an overview of fundamental electrostatic concepts, electrostatic effects, and most importantly of electrostatic metrology, especially what can and what cannot be measured. (Formerly TR01-99)

### Susceptible Device Concepts

# ESD TR50.0-03-03 Voltage and Energy Susceptible Device Concepts, Including Latency Considerations

Contains information to promote an understanding of the differences between energy and voltage susceptible types of devices and their sensitivity levels. (Formerly TR16-03)

### Symbols

### ANSI/ESD S8.1-2012 Symbols – ESD Awareness

Three types of ESD awareness symbols are established by this document. The first one is to be used on a device or assembly to indicate that it is susceptible to electrostatic charge. The second is to be used on items and materials intended to provide electrostatic protection. The third symbol indicates the common point ground.

### System Level ESD

# ESD TR14.0-01-00 Calculation of Uncertainty Associated with Measurement of Electrostatic Discharge (ESD) Current

Provides guidance on measuring uncertainty based on an uncertainty budget. (Formerly TR07-00)

### ESD TR14.0-02-13 System Level Electrostatic Discharge (ESD) Simulator Verification

Developed to provide guidance to designers, manufacturers, and calibration facilities for verification and specification of the systems and fixtures used to measure simulator discharge currents. (Formerly ANSI/ESD SP14.1)

### Transient Latch-up

### ESD TR5.4-01-00 Transient Induced Latch-Up (TLU)

Provides a brief background on early latch-up work, reviews the issues surrounding the power supply response requirements, and discusses the efforts on RLC TLU testing, transmission line pulse (TLP) stressing, and the bi-polar stress TLU methodology. (Formerly TR09-00)

### ESD TR5.4-02-08 Determination of CMOS Latch-up Susceptibility - Transient Latch-up - Technical Report No. 2

Intended to provide background information pertaining to the development of the transient latch-up standard practice originally published in 2004 and additional data presented to the group since publication.

# ESD TR5.4-03-11 Latch-up Sensitivity Testing of CMOS/Bi CMOS Integrated Circuits – Transient Latch-up Testing – Component Level Supply Transient Stimulation

Developed to instruct the reader on the methods and materials needed to perform Transient Latch-Up Testing. (Formerly ANSI/ESD SP5.4-2008.)

### ESD TR5.4-04-13 Transient Latch-up Testing

Defines transient latch-up (TLU) as a state in which a low-impedance path, resulting from a transient overstress that triggers a parasitic thyristor structure or bipolar structure or combinations of both, persists at least temporarily after removal or cessation of the triggering condition. The rise time of the transient overstress causing TLU is shorter than five  $\mu$ s. TLU as defined in this document does not cover changes of functional states, even if those changes would result in a low-impedance path and increased power supply consumption.

### **Transmission Line Pulse**

# ANSI/ESD STM5.5.1-2008 Electrostatic Discharge Sensitivity Testing – Transmission Line Pulse (TLP) – Component Level

Pertains to Transmission Line Pulse (TLP) testing techniques of semiconductor components. The purpose of this document is to establish a methodology for both testing and reporting information associated with TLP testing.

# ANSI/ESD SP5.5.2-2007, Electrostatic Discharge Sensitivity Testing - Very Fast Transmission Line Pulse (VF-TLP) - Component Level

Pertains to Very Fast Transmission Line Pulse (VF-TLP) testing techniques of semiconductor components. It establishes guidelines and standard practices presently used by development, research, and reliability engineers in both universities and industry for VF-TLP testing. This document explains a methodology for both testing and reporting information associated with VF-TLP testing.

### ESD TR5.5-01-08 Transmission Line Pulse (TLP)

A compilation of the information gathered during the writing of ANSI/ESD SP5.5.1 and the information gathered in support of moving the standard practice toward re-designation as a standard test method.

### ESD TR5.5-02-08 Transmission Line Pulse Round Robin

Intended to provide data on the repeatability and reproducibility limits of the methods of ANSI/ESD STM5.5.1.

### **Workstations**

### ESD ADV53.1-1995 ESD Protective Workstations

Defines the minimum requirements for a basic ESD protective workstation used in ESD sensitive areas. It provides a test method for evaluating and monitoring workstations. It defines workstations as having the following components: support structure, static dissipative worksurface, a means of grounding personnel, and any attached shelving or drawers.

### **Worksurfaces**

### ANSI/ESD S4.1-2006 Worksurface - Resistance Measurements

Provides test methods for evaluating and selecting worksurface materials, testing of new worksurface installations, and the testing of previously installed worksurfaces.

### ANSI/ESD STM4.2-2012 ESD Protective Worksurfaces - Charge Dissipation Characteristics

Aids in determining the ability of ESD protective worksurfaces to dissipate charge from a conductive test object placed on them.

### ESD TR4.0-01-02 Survey of Worksurfaces and Grounding Mechanisms

Provides guidance for understanding the attributes of worksurface materials and their grounding mechanisms. (Formerly TR15-02)

### Wrist Straps

### ANSI/ESD S1.1-2013 Wrist Straps

A successor to EOS/ESD S1.0, this document establishes test methods for evaluating the electrical and mechanical characteristics of wrist straps. It includes improved test methods and performance limits for evaluation, acceptance, and functional testing of wrist straps.

### ESD TR1.0-01-01 Survey of Constant (Continuous) Monitors for Wrist Straps

Provides guidance to ensure that wrist straps are functional and are connected to people and ground. (Formerly TR12-01)

### About the EOS/ESD Association, Inc.

Founded in 1982, the EOS/ESD Association, Inc. is a professional voluntary association dedicated to advancing the theory and practice of electrostatic discharge (ESD) avoidance. From fewer than 100 members, the Association has grown to more than 2,000 throughout the world. From an initial emphasis on the effects of ESD on electronic components, the Association has broadened its horizons to include areas such as textiles, plastics, web processing, cleanrooms, and graphic arts. To meet the needs of a continually changing environment, the Association is chartered to expand ESD awareness through standards development, educational programs, local chapters, publications, tutorials, certification, and symposia.